I SEE WHAT YOU MEAN:

Prospect Research & Visualization

Erin Moffatt

Prospect Research Analyst, University of Alberta

SESSION DATE: SESSION TIME:

Liz Murray

Manager, Knowledge & Systems, Sunnybrook Foundation

October 13, 2016 10:30 to 11:45 AM

Presentation Overview

1) About Visualizations

- Visualization Defined
- Why Visualization?
- Classification of Visualization

2) Designing Visualizations

Process

3) Tips & Tools

- Best Practices
- Software

4) Wrap Up

- Index of Examples
- Further Reading
- Contact Us
- Questions?

Visualization Defined

- Our definition:
 - A communication tool used to help an intended audience to better understand the significance of a specific dataset or curated message by placing it in a visual context
 - i.e. Maps, Infographics, Charts, Diagrams, Ikea Instructions, etc.
- Used for both concrete and abstract ideas

Visualization Defined

- Earliest examples:
 - ~200 BC Geometric diagrams recording the position of stars and map creation to aid in navigation and exploration

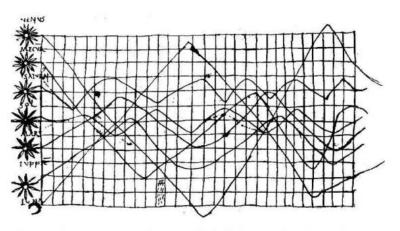


Figure 2: Planetary movements shown as cyclic inclinations over time, by an unknown astronomer, appearing in a 10th century appendix to commentaries by A. T. Macrobius on Cicero's *In Somnium Scripionus*. Source: Funkhouser (1936, p. 261).

Visualization Defined

- Bar and pie charts, histograms, line graphs and time-series plots, contour plots, scatterplots, etc.
- Thematic cartography: mapping progressed from single maps to comprehensive atlases, depicting data on a wide variety of topics (economic, social, moral, medical, physical, etc.)
- 3D visualizations

Visualization Defined

History of Visualization

 1759-1823 - William Playfair: first line graph, bar chart, pie chart and circle graph

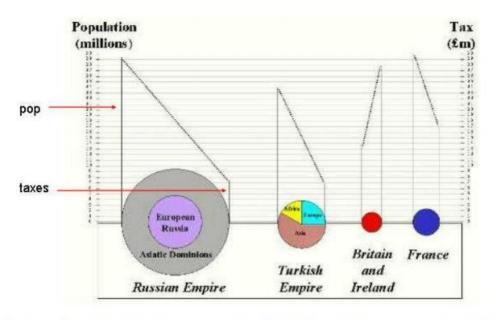
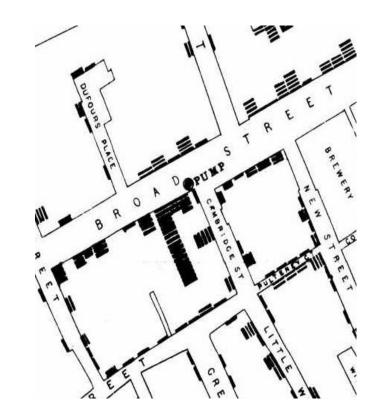
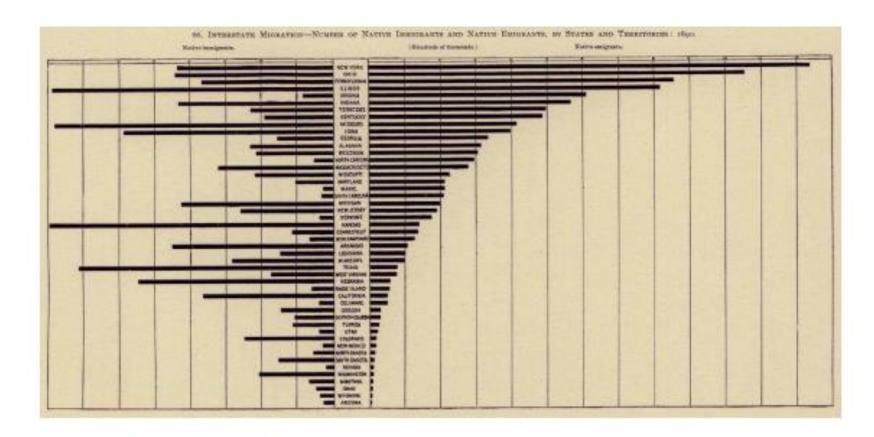
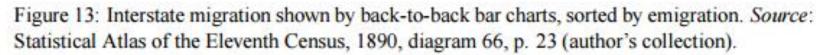



Figure 6: Re-drawn version of a portion of Playfair's 1801 pie-circle-line chart, comparing population and taxes in several nations.


Visualization Defined



Visualization Defined

Visualization Defined

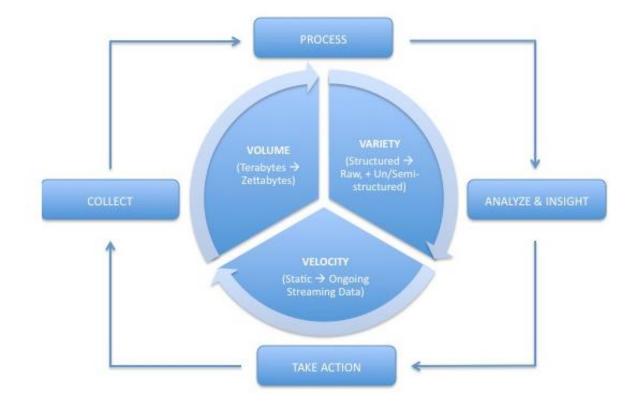
- Statistical graphs become main stream, appearing in textbooks, curriculum, and standard use in government, commerce and science
- Computer science, data analysis and display and input technology
- Information presentation and interaction

Visualization Defined

History of Visualization

- 21st Century:
 - Rise of big data

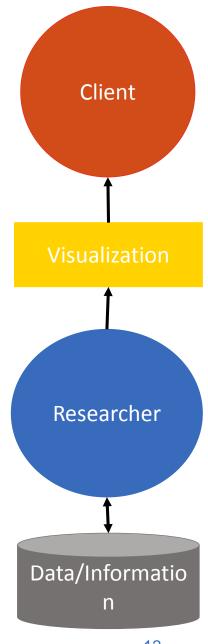
THE SHEER SCALE OF GROWTH IN RECENT YEARS



10

Visualization Defined

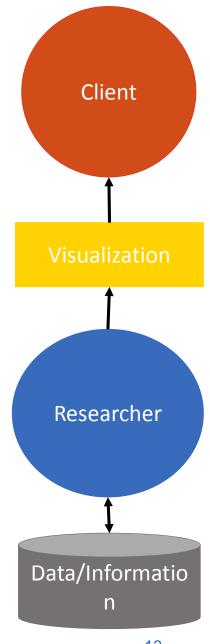
- 21st Century:
 - Rise of big data



Visualization Defined Elements

- Data/Information
 - Foundation of Visualization
 - Researcher interacts w/ data/information
- Researcher (Designer)
 - Must make design decisions based on the Client and the Data/Information

Visualization Defined Elements


Visualization

 Communication tool between Researcher and Client

Client

 Researcher's success is measured based on the Client's success

Visualization Defined

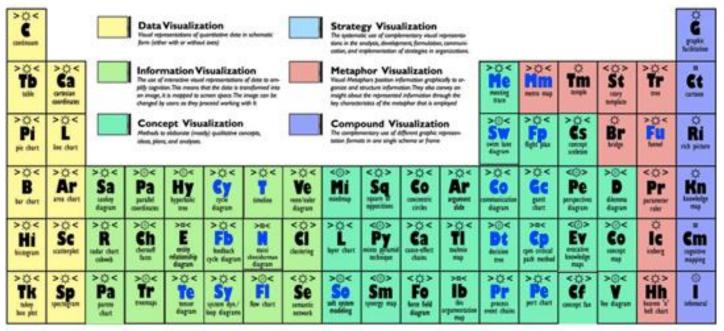
Main Types

	Infographics	Data Visualization
	 Manually drawn Custom treatment of information Specific to one dataset Difficult to change or update Non-Quantifiable Data Less uniform data 	 Algorithmically drawn Largely rendered with the help of computerized methods Easy to regenerate with different datasets Quantifiable Data
•		

Visualization Defined

Main Types

Infographics	Data Visualization
 Aesthetically rich Strong visual content meant to draw the eye and hold interest Relatively data poor Each information dimension needs to be manually added 	 Often aesthetically barren Style takes a backseat to data Relatively data rich More data dimensions


Visualization Defined

Example Infographic

www.visualliteracy.org/periodic_ta ble/periodic_table.html

A PERIODIC TABLE OF VISUALIZATION METHODS

Cy	Process Visualization							
Ну	Structure Visualization	>0<	>0<	>0<	>0<	<0>		
0	Overview Detail	Sd soph demand chain	Pr peternana charting	St .	OC orposates dust	Ho bess of quality		
0	Detail AND Overview	0	>⊕<	0	>0<	<==>		
<>	Divergent thinking	Ed	Pf	Sg	MZ	Z		
> <	Convergent thinking	bes	Ragram	game board	minutarity	mephologica		

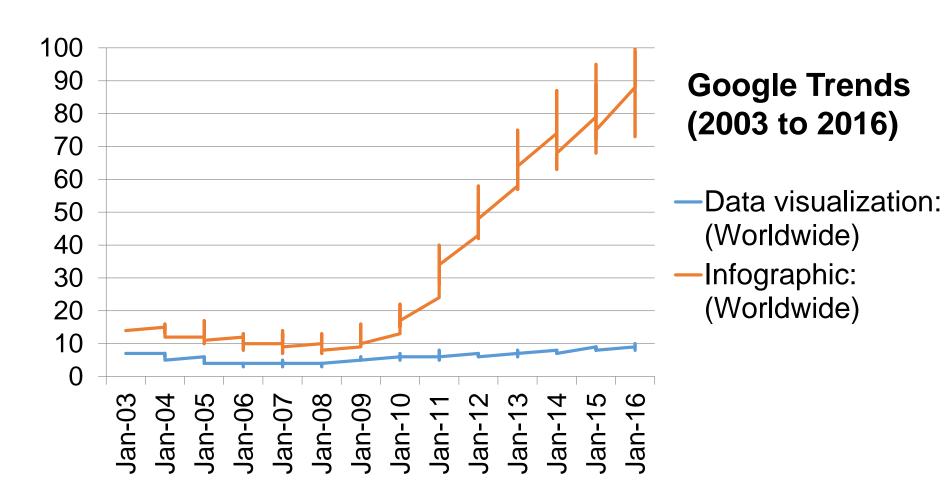
>0<

Sm

>0<

Sr

190t


Ld Hegola dapan

Stc

Bm

Visualization Defined

Example
Data
Visualization

Why Visualization?

Benefits

- Capitalize on the strengths of the human visual processing system
 - A large proportion of the human cortex is dedicated to processing visual signals
 - Visual signals are integrated with language centres in the cortex
 - Visual processing is linked to information retention

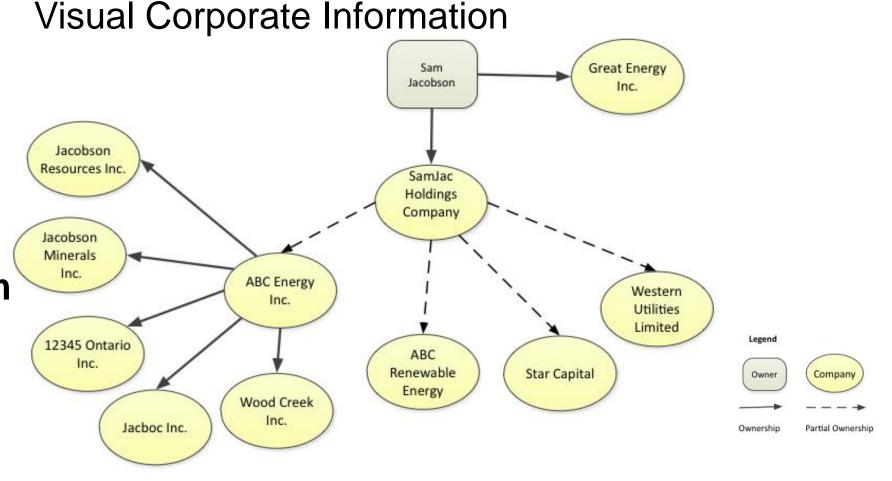
Why Visualization?

Example Benefits

CANADA 2016

Capitalize on the strengths of the human visual processing system

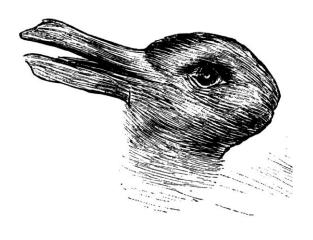
Textual Corporate Information


Sam Jacobson directly owns two companies, Great Energy Inc. and SamJac Holdings Company (his personal holding company). Through SamJac, Sam additionally retains partial ownership of 4 companies: ABC Renewable Energy, Star Capital, Western Utilities Limited, and ABC Energy Inc. ABC Energy Inc. is the parent company to five whollyowned subsidiary companies: Jacobson Resources Inc., Jacobson Minerals Inc., 12345 Ontario Inc., Jacboc Inc. and Wood Creek Inc.

Why Visualization?

Example

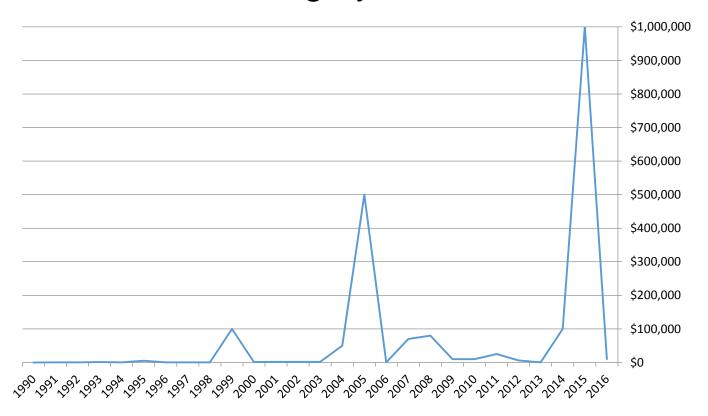
Benefits


Capitalize on the strengths of the human visual processing system

Why Visualization?

Benefits

- Exploit the brain's natural ability to detect patterns
 - Hardwired to detect patterns
 - Superior pattern processing is one of the human brain's unique features
 - Duck or Rabbit?


Why Visualization?

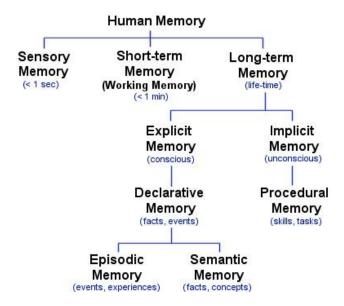
Example Benefits

Exploit the brain's natural ability to detect patterns

Why Visualization?

Example Benefits

Exploit the brain's natural ability to detect patterns



Cumulative Giving by Year for Mrs. Y

Why Visualization?

Benefits

- Exploit the brain's natural ability to remember
 - Since memories are based on reconstruction, visualizations are easier to recall
 - Visualizations are also more unique than textual description and therefore can be easier to remember
 - Visualization strengthens information retention over time

Why Visualization?

Example **Benefits**

Exploit the brain's natural ability to remember

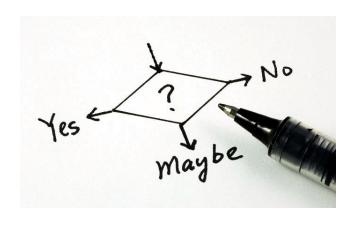
Sid Dougal is CEO of BagPak Inc., a packaging company. He has an interest in Heart.

Tony Small is CFO at Bank of CanSave. He has been a board member since 2015. He is a MG donor with an interest in Rehab.

Event Research

TABLE 1

Bill Lewis is founder of Buzz Mining. **Sandy Lewis** is President of the Lewis Family Foundation. They have an interest in Brain Sciences.


doctor. Anne has been a board member since 2012. She has an interest in Heart.

Anne Johnson is a

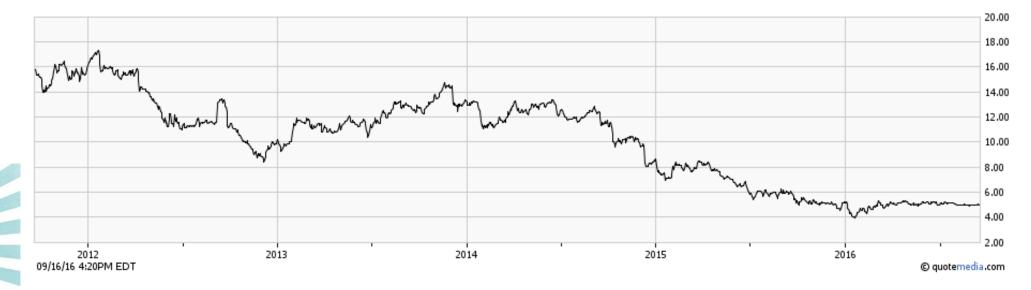
Chuck Jones is President of CJ Holdings, his own private equity company. Chuck is a MG donor with an interest in Mental Health.

Why Visualization?

Benefits

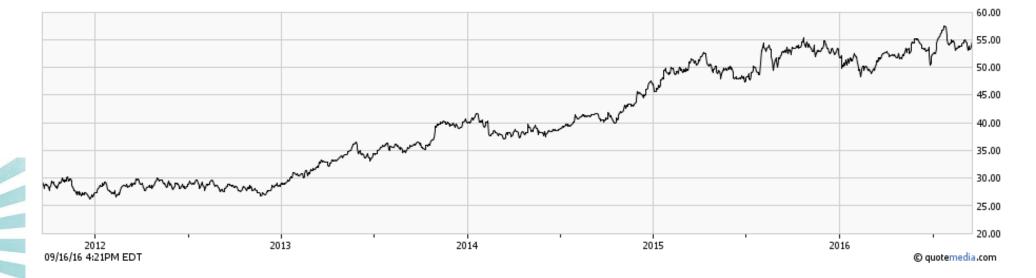
Quickly bring a client to conclusion

- Assists with fast decision making
- Interactive visualizations allow the Client to quickly explore data in a meaningful, curated manner


Why Visualization? Benefits

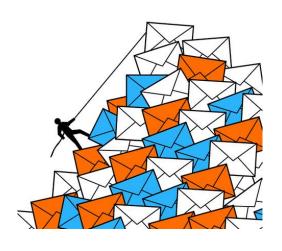
- Example Quickly bring a client to conclusion
 - Five-Year Stock Price Trend
 - Tells a clear and accurate story fast!

Is it a good time to ask Mr. Smith for a gift?


Why Visualization? Benefits

- Example Quickly bring a client to conclusion
 - Five-Year Stock Price Trend
 - Tells a clear and accurate story fast

Is it a good time to ask Mr. Smith for a gift?



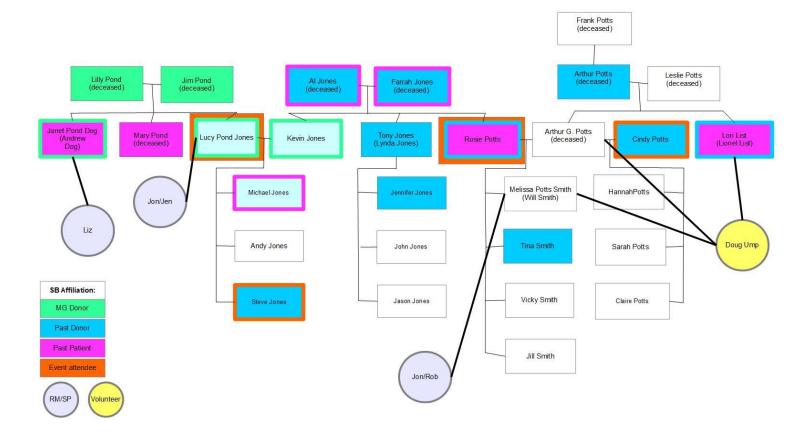
Why Visualization?

Benefits

Refine the narrative, tackle information overload

- Big data is too large to comprehend and absorb in its raw form
- A picture can paint a thousand words
- Provides context and enables categorization

Why Visualization?

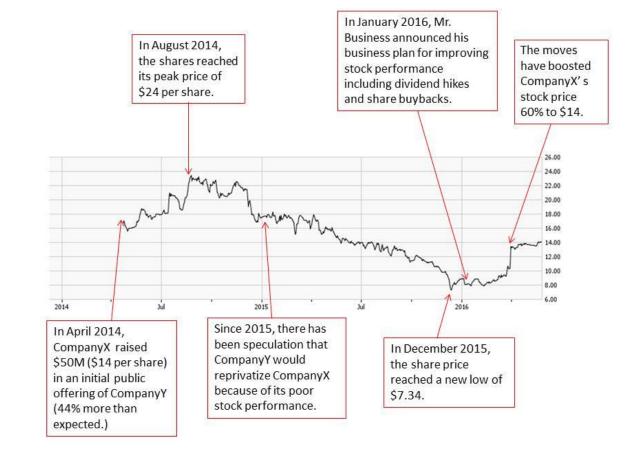

Example

Benefits

Refine the narrative, tackle information overload

Annotated Family Tree with Affinity/Connections

Why Visualization?


Example

Annotated Stock Chart with Notable Company News

Benefits

Refine the narrative, tackle information overload

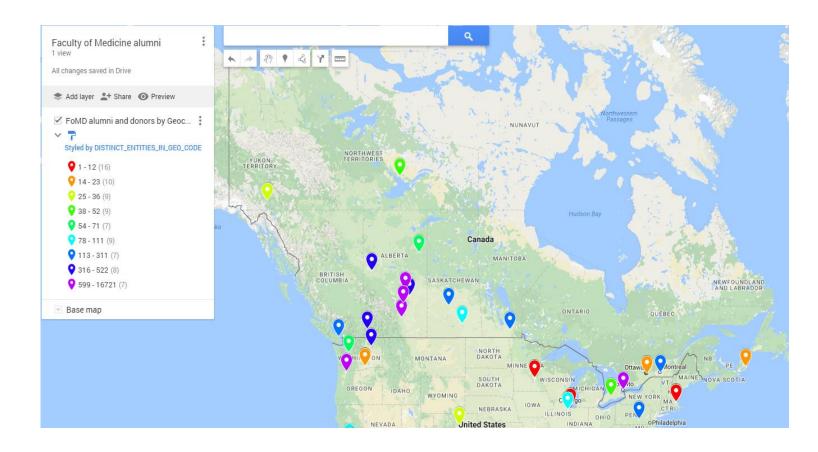
Why Visualization?

Benefits

Uncover trends and new areas to explore

- Data is easier to manipulate and view from multiple angles, facilitating new approaches
- Determine correlations and identify gaps
- Encourages hypothesis and testing to inform new strategies
- Focus attention in key areas

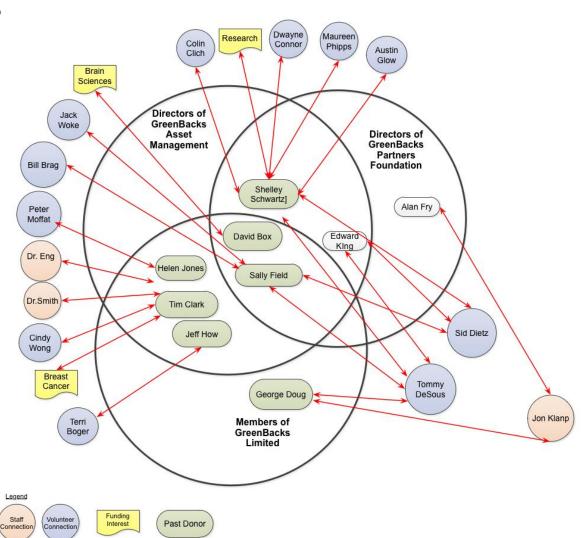
Why Visualization?


Example

Benefits

Uncover trends and new areas to explore

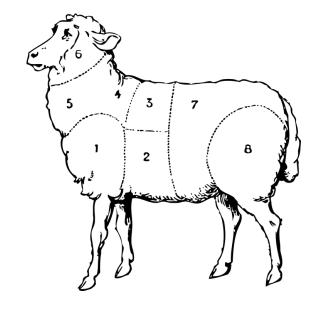
Map of Faculty Alumni



Why Visualization?

Example Benefits

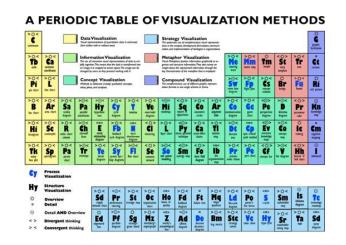
Uncover trends and new areas to explore



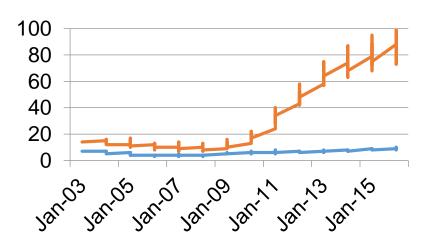
- Relationship Map
 Between a Corporate
 Foundation, Board of
 Directors, and Founding
 Members and the
 Hospital Foundation
- Help to develop strategy!

Classification of Visualization

- Ways to categorize or describe visualizations
- Classification will impact design decisions
 - Important to define requirements before designing

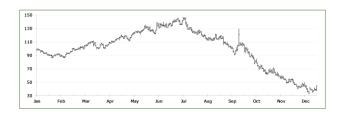


Classification of Visualization


Infographic vs.
Data
Visualization

- Most important distinction to make
 - Refer to Defining Visualizations Main Types

Infographic


Data Visualization

Classification of Visualization

Complexity

A price chart has 2 data dimensions - price and date

- The greater the number of data dimensions, the more complex the visualization
 - The more complex the harder to design well
- Rule of thumb: 3 to 4 data dimensions max per visualization

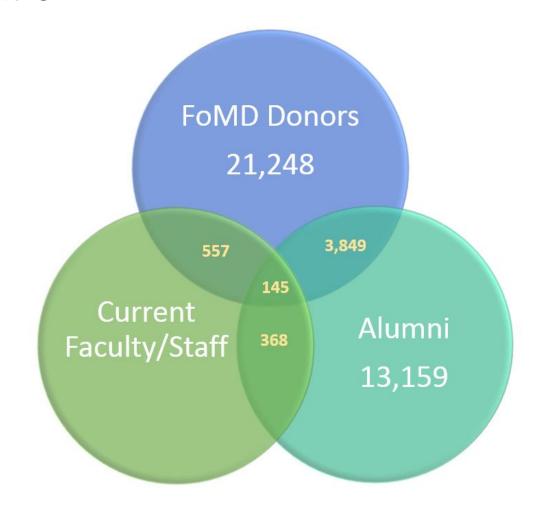
Classification of Visualization

Exploratory vs. Explanatory

- Researcher is usually the audience
- Purpose: To explore a dataset by translating data into visual medium
- Answer is the end product

Explanatory:

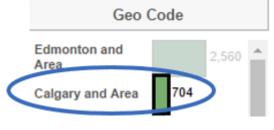
- Client is the audience
- Purpose: communicating a story to a new audience
- Answer is known from the start



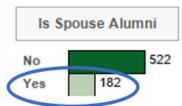
Classification of Visualization

Example **Exploratory**

Overlap between
Faculty of
Medicine Donors,
Alumni and
Faculty



Classification of Visualization

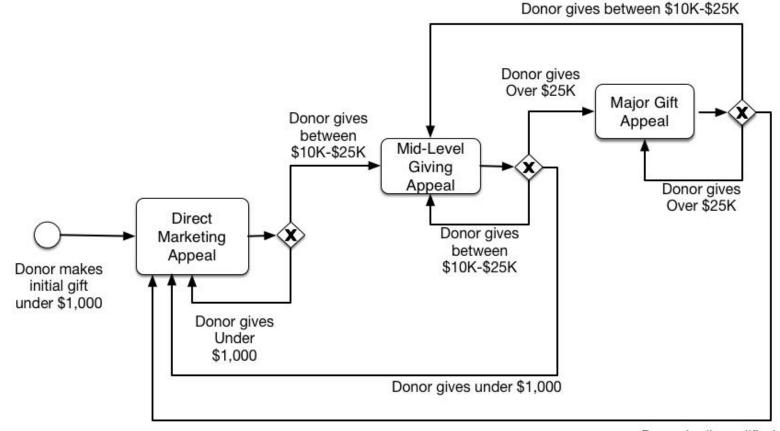

Example **Exploratory**

Unassigned Faculty Alumni

- There are 5,214 unassigned Faculty alumni in Canada, how many:
- 1. Live in Calgary?

2. Are married to an alum?

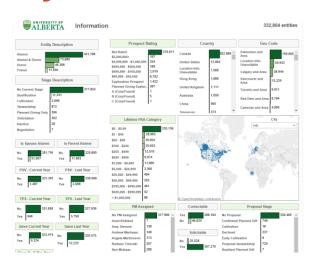
3. Gave this fiscal year?



Classification of Visualization

Example **Explanatory**

Donor
Pipeline
Segmenting



Donor is disqualified

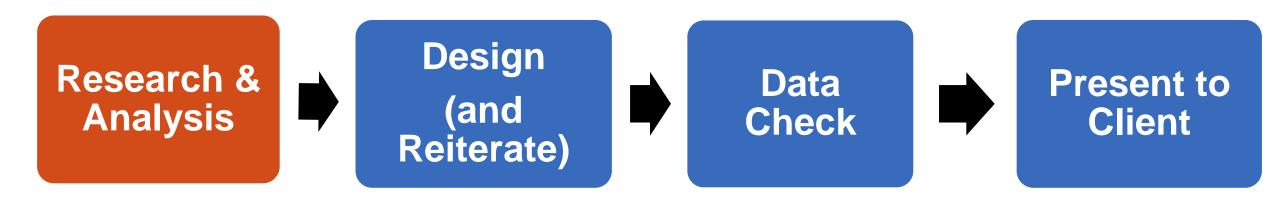
Classification of Visualization

Hybrid

- Both Exploratory and Explanatory
 - Curated dataset
 - Presented with the intention of allowing exploration on a reader's part
 - Interactive in nature

Classification of Visualization

Informative vs. Persuasive


- Neutral presentation of facts
- Purpose: To educate audience
- Synthesis of broad datasets

Persuasive:

- Subjective presentation of facts
- Purpose: To inform an intended audience of a specific view by presenting select information

Process Overview

Research & Analysis

- Visualizations should enhance your prospect research
- Must assess return on investment
 - How will the visualization add value? (Refer to Why Visualizations?)
- Common "information suspects" for visualization:
 - Family relationships
 - Corporate/Industry information
 - Ownership structure

- Prospect Lists
- Financial Information

Research & Analysis

Know your Data/Information

APRA CANADA 2016 October 12-14 Toronto

- Must understand data/information in order to treat it well
- Ensure you have the full picture
 - If you are uncertain, it could mean you need to do further research/analysis
- Easier and more efficient to do research prior to designing the visualization

Research & Analysis

Know your Data/Information

- Consider the characteristics, relationships and structure of your information:
 - Is it a time-series? A hierarchy?
 - How many data dimensions? What are the most important dimensions?
 - What sort of relationships do they have?
 - How variable are they? How can they be characterized?
 - Is there any data missing?

Research & Analysis

Know your Data/Information

Organizations donating to the Faculty of Medicine

Funding Interest	ID	Prospect Group	Total Giving	Last Gift Date 🚭	Geo Code	Last Contact T	Last Contact Type
Cancer	25509	8 Medicine & Dentistry	\$1,195,844.35	12/07/2016	Montreal and Area	20/05/2014	Correspondence
Emergency Medicine	39078	5	\$15,500.00	04/07/2016	Ottawa and Area		
Gastroenterology	39853	0	\$149,786.72	30/06/2016	New York and Area		
Multiple Sclerosis	25445	1 Medicine & Dentistry	\$2,352,503.82	30/06/2016	Toronto and Area		
Emergency Medicine	40374	6	\$5,000.00	28/06/2016	Edmonton and Area		
Diabetes	36105	0 Medicine & Dentistry	\$1,875,922.00	24/06/2016	Toronto and Area	24/04/2014	Correspondence
Fetal Acohol Syndrome	38620	5	\$185,000.00	23/06/2016	Vancouver and Area		
Various	38618	8	\$6,172,425.77	21/06/2016	Ottawa and Area		
Liver	32823	2 Medicine & Dentistry	\$914,000.00	13/06/2016	Toronto and Area	23/03/2016	Correspondence
Cancer	24703	8 Faculty Development	\$32,731,231.88	10/06/2016	Edmonton and Area	01/04/2016	Personal Scheduled Visit
Various	25427	8 Medicine & Dentistry	\$70,560.00	10/06/2016	Edmonton and Area	19/12/2008	Correspondence
Brain	40329	8	\$5,173,045.00	10/06/2016	Montreal and Area		
Vision	36095	1 Corporate & Foundation Relations	\$144,671.00	07/06/2016	Toronto and Area	22/01/2016	Correspondence
Vision	39147	3	\$54,296.00	07/06/2016	Toronto and Area		
Pediatrics	39872	2	\$22,507.00	31/05/2016	Ottawa and Area		
Pediatrics	36527	1 Corporate & Foundation Relations	\$1,605,083.09	31/05/2016	New York and Area		
Research	40020	9	\$81,244.80	31/05/2016			

Research & Analysis

Know your Data/Information



Example of data set

Sam Jacobson directly owns two companies, Great Energy Inc. and SamJac Holdings Company (his personal holding company). Through SamJac, Sam additionally retains partial ownership of 4 companies: ABC Renewable Energy, Star Capital, Western Utilities Limited, and ABC Energy Inc. ABC Energy Inc. is the parent company to five whollyowned subsidiary companies: Jacobson Resources Inc., Jacobson Minerals Inc., 12345 Ontario Inc., Jacboc Inc. and Wood Creek Inc.

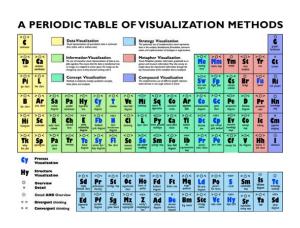
Research & Analysis

Know your Client

- Know your client and his/her needs:
 - How will they be using the information? For what action?
 - How much detail do they need?
 - How long do they have to review the information?
 - What is their learning style?
 - Are they familiar with the subject?
 - What jargon do they know?

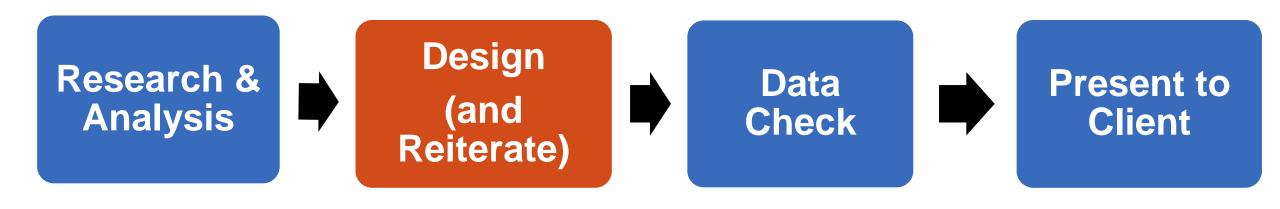
Research & Analysis

Know your Narrative



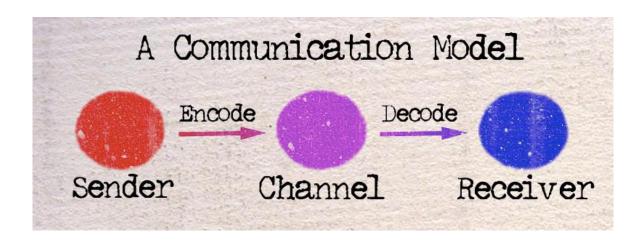
- What is the specific story that you are telling?
- What is your scope?
- What do you want to achieve?
- Avoid TMI keep it simple (as possible)
 - Extra information will obscure the message and complicate the extraction of knowledge

Research & Analysis


Know your Visualization

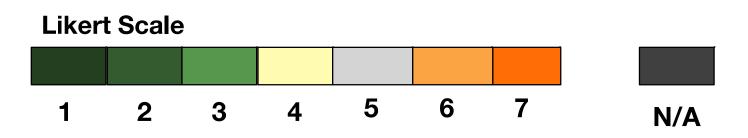
- Infographic or Data Visualization?
- How many data dimensions?
- Exploratory or Explanatory?
- Informative or Persuasive?
- Hybrid?

Process Overview



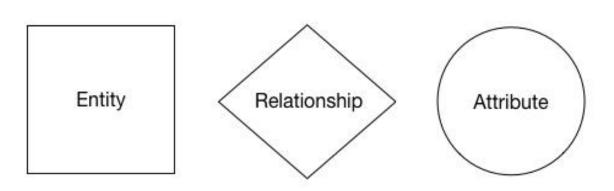
Design & Reiterate

- Choose appropriate visual encodings to represent your data dimensions
- Trial and Error process
- Practice makes perfect (reuse coding schemas)



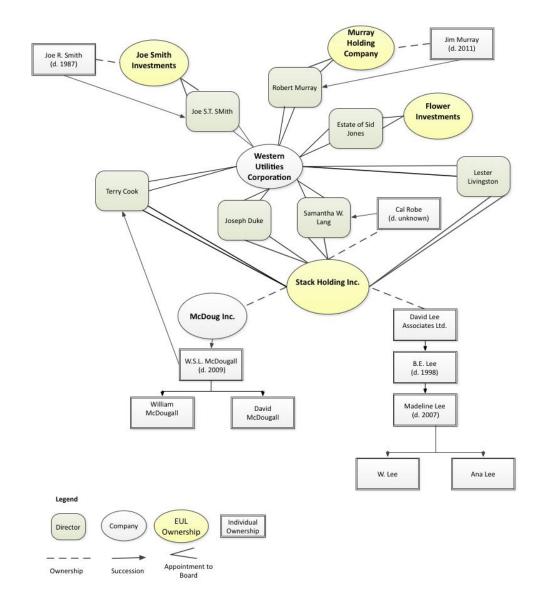
Design & Reiterate

- Use a colour schema to distinguish between data dimensions
- Be sure to use distinctive colours
- Too many colours can make the visualization harder to interpret



Design & Reiterate

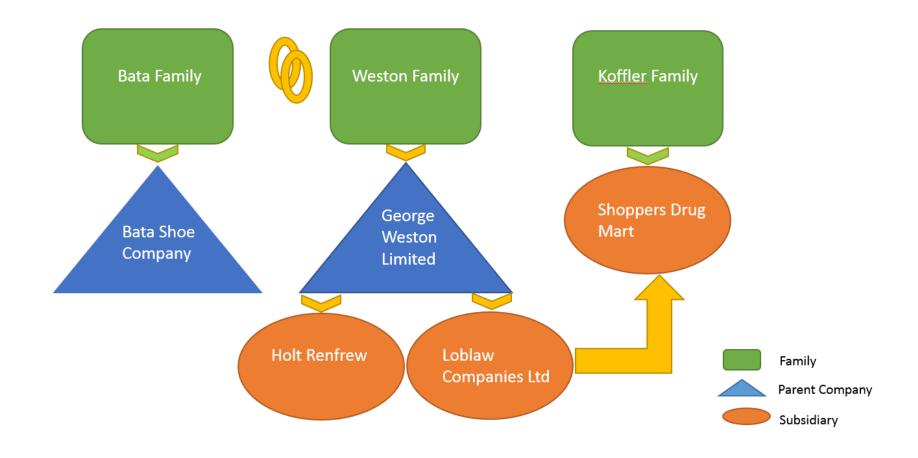
- Use distinct shapes to represent data dimensions
- Always include legend


Design & Reiterate

Encode Your Data

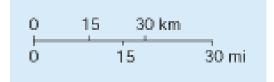
By shape

Company
Ownership History
for Estate File


Design & Reiterate

Encode Your Data

By shape


Family/Business Connections

Design & Reiterate

Encode Your Data

Encode by size

- Assign meaning by using size to represent data
- Should be proportionally accurate (use % sizing to adjust shapes)

Design & Reiterate

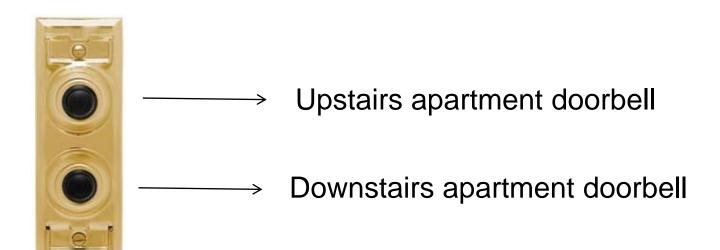
Encode Your Data

By size

\$1.8M **Annual** 20%

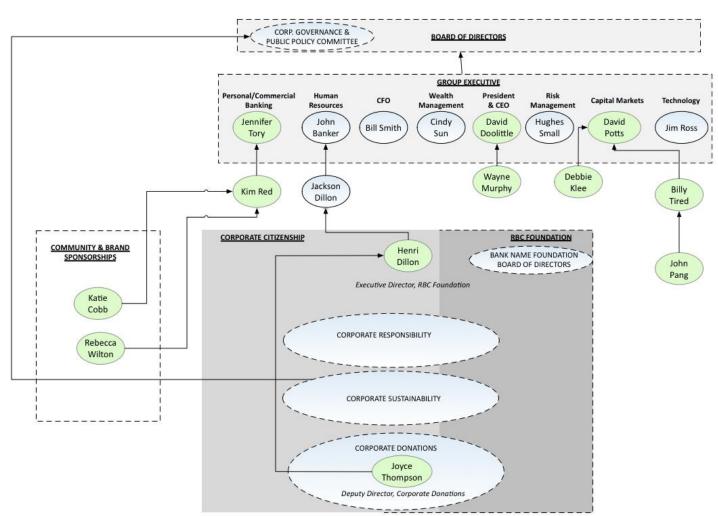
10%

\$630K Planned Giving 7%

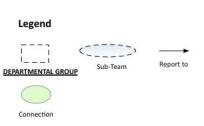


Design & Reiterate

- Choose appropriate visual encoding
 - Encode by placement/proximity
 - Good mapping leverages visual similarity - a powerful cognitive tool



Design & Reiterate


Encode Your Data

By Placement/ Proximity

Reporting
Structure for
Bank Contacts

Design & Reiterate

Encode Your Data

By Placement/ Proximity

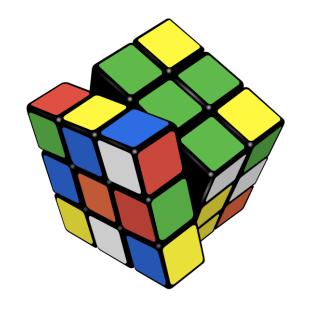
- File CirculationCover Sheet
- Hard copies can be be more efficiently shared

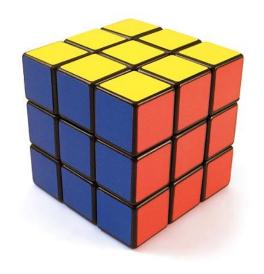
Design & Reiterate

Be deliberate - less is often more

Brainpower used for decoding

Brainpower Remaining for understanding

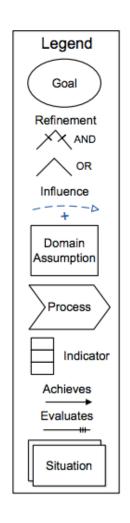

Total Brainpower Available



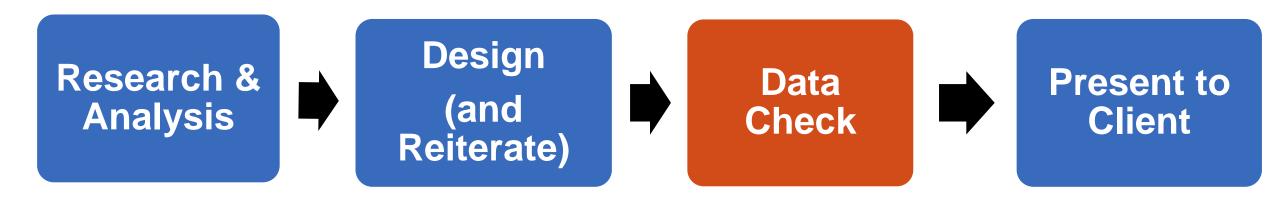
Design & Reiterate

Reiterate

- Takes time to find the optimal configuration
- The more complex the model, the more challenging it is to encode data dimensions in a clear and understandable way



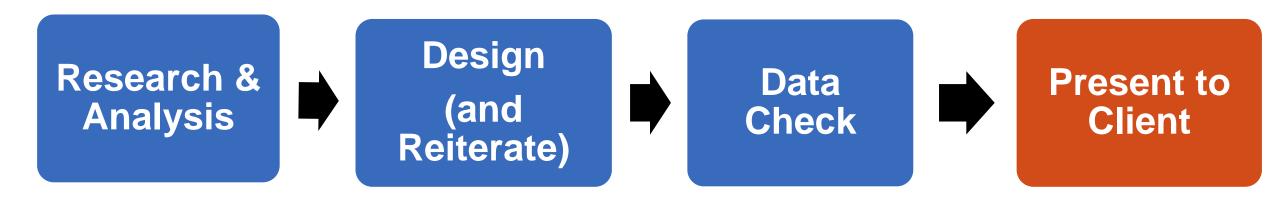
Design & Reiterate


Add a Legend and Sources

- Legend will help the Client to understand visualization
 - Leave zero ambiguity
- Show your sources
 - Add validity to visualization
 - Reduce questions

Process Overview

Data Check



Validate your visualization

- Accuracy is key
- Ensure the integrity of your visualization
- For larger visualizations, do random data checks to ensure data is accurate

Process Overview

Present to Client

- Not a "required" step
- Good way to get feedback (especially at the beginning)
- Help introduce new format to audience
- Help to better understand context

Tips & Tools

Best Practices General Tips

- Be accurate!
- Use the "5 second rule"
 - Client should be able to understand (decode) within 5 seconds
- Minimize text
- Decide whether a legend is needed
- Be data transparent

Tips & Tools

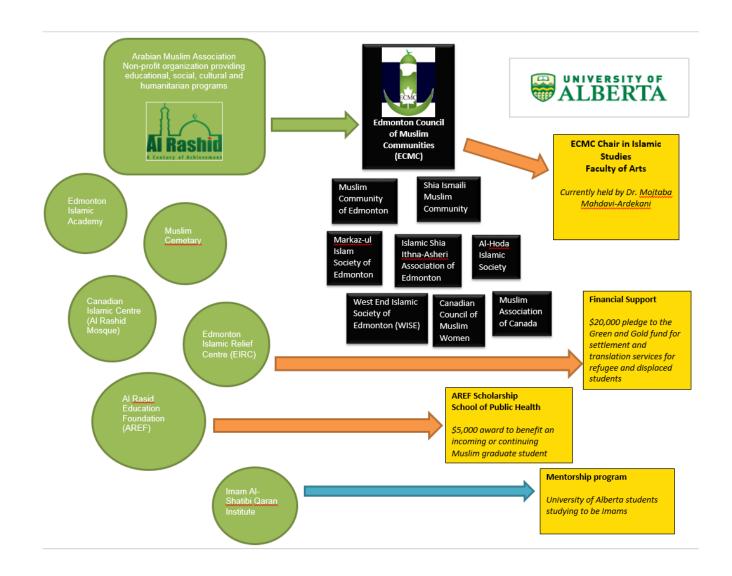
Best Practices

Avoid Cognitive Burden

- Cognitive burden is the total sum of mental efforts required to understand and assimilate information
 - Cognitive burden makes it more difficult and slower to learn
 - It interferes with thinking, reading, learning and decision making
 - Good design reduces cognitive burden

Brainpower used for decoding

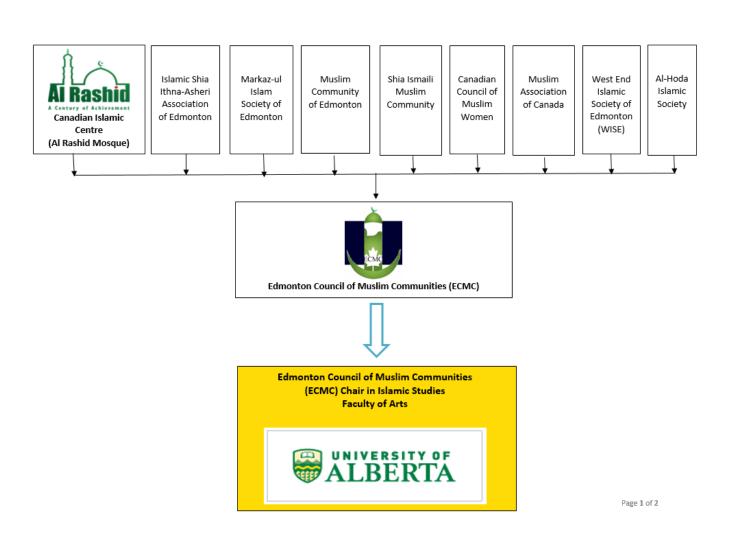
Brainpower for


understanding

Best Practices

Avoid Cognitive Burden

High Cognitive Burden



Best Practices

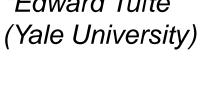
Avoid Cognitive Burden

Low Cognitive Burden

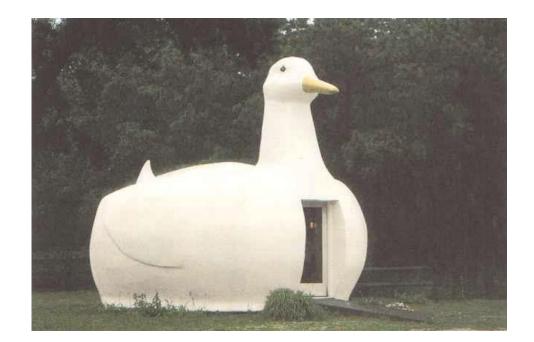
Best Practices

Typography

- Words in ALL CAPS are hard to read
- Sans-serif is easier to read than serif (especially on screens)
- Avoid extreme font sizes (not too big or too small)



Best Practices


Avoid "Chart Junk*"

*Edward Tufte

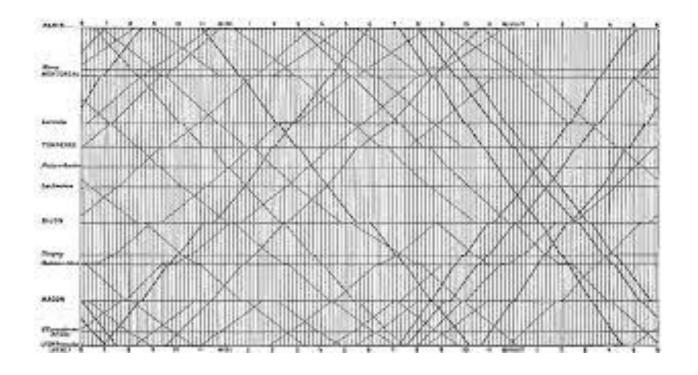
"The Duck" - Excessive use of ridiculous decorative elements

Best Practices

Avoid "Chart Junk*"

*Edward Tufte (Yale University)

3	4	5	6	7
01/23/1999	04/2/2003	07/3/1990	12/12/2005	01/4/2013
\$65.00	\$0.00	-\$56.00	\$35.00	\$99.00

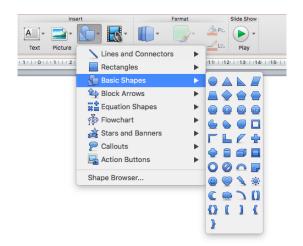

Best Practices

Avoid "Chart Junk*"

*Edward Tufte (Yale University)

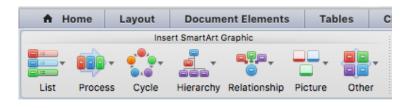
 "Vibration" – closely packed fine lines that almost seem to move

Software


- Wide variety of software available (free and paid)
- Designing visualizations is an inter-operable skill
 - Can apply knowledge of specific software widely (there are similar features between software)

Software

Microsoft PowerPoint



- Included with Microsoft Office
- Easy to learn and use
- Limited functionality (less control over nodes and connections)
- Templates for infographics available online
- Can easily annotate existing images in PowerPoint (Call Outs)

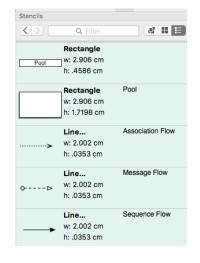
Software

Microsoft Word

- Included with Microsoft Office
 - Similar functionality to PowerPoint
- Easily added to Research Profiles
- Multiple visualization tools available
 - Easy to try different formats with same data set
 - Preview style and design options
- Limited functionality
- Templates are restrictive (challenging formatting)

Software

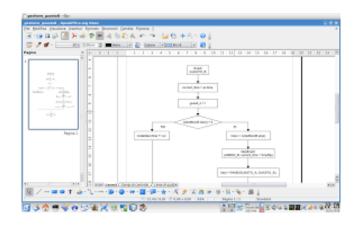
Microsoft Visio



- Not included with Microsoft Office
- Slightly more involved learning process
- Excellent customization
 - Full control over nodes and connections
- Creates cleaner, more professional products
- More accurate modeling
- Templates and stencils widely available (free and paid)

Software

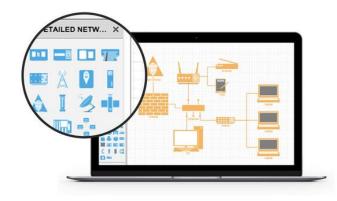
Omnigraffle



- Mac version of Visio
- Slightly more involved learning process
- Excellent customization
 - Full control over nodes and connections
- Creates cleaner, more professional products
- More accurate modeling
- Templates and stencils widely available (free and paid)

Software

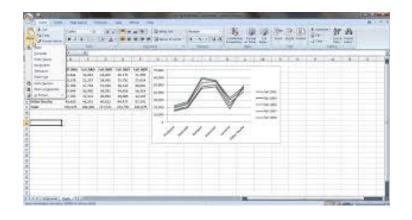
OpenOffice Draw



- Free to download (good for beginners who want to try drawing software for free)
- Fairly straight forward interface
- More challenging to achieve clean look vs. paid version of drawing software
- Less control over customization (challenging formatting)

Software

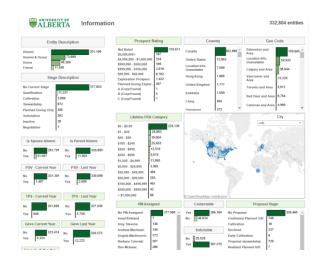
Web-based software



- Free web-based software, such as:
 - Google Draw
 - Lucidchart
 - Piktochart
- Easy to use, simple interfaces
- Export image files
- More challenging to achieve clean look vs. paid version of drawing software
- Less control over customization

Software

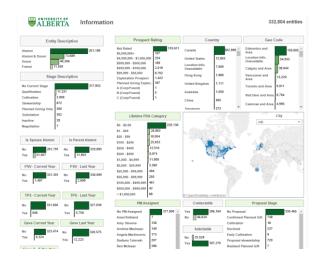
Microsoft Excel



- Included with Microsoft Office
- Easy to pull data from database
- Formulas make it easy to clean and manipulate data
- Can interact with data (filters, pivot tables)
- Easy to make basic graphs
- Use to create dashboard reports
- Add-ins can increase functionality

Software

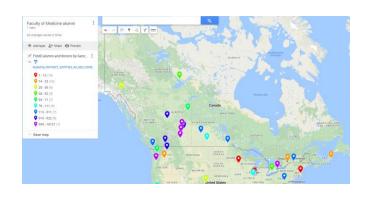
Tableau



- Free and Paid versions
- Intuitive, drag and drop manner integrates with most data types
- Interactive:
 - User can highlight sections and drilldown into charts without extensive skills or assistance from IT once created
- Create and save views for data sets you utilize frequently
- Limited time spent formatting

Software

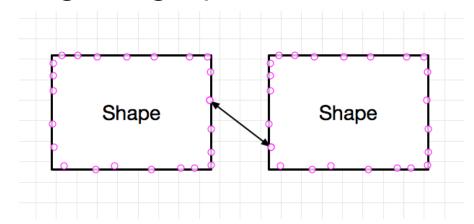
Tableau



- Can subscribe to a specific dashboard
 - i.e. weekly giving, and receive email notification of new report
- Still need IT expertise if you're connecting to a database rather than simply uploading from an excel or CSV file
- If connected to database than it can refresh data daily, remaining current
- Free trial available

Software

Google Maps


- Free web-based tool
- Easy to use interface
- Fewer features for customization
- Import data sets from Google Sheets, Excel, CSV file types
- Different style options available
- Can manipulate data columns you want to use

Software Tips

- Use screen grabs/print screen options to create image files.
 - Copy & paste from Globe & Mail for stock charts
- Embed images into drawing software and annotate
- Learn shortcuts of software
- Reuse structure of existing infographics (such as family trees)
- Understand how to manipulate nodes and connections
 - Big part of creating infographics

Title	Slide #	Created Using
Elements of Visualization	12, 13	PowerPoint
Visual Corporate Information	20	Visio
Cumulative Giving for Mrs. Y	22	Excel
Cumulative Giving for Mrs. Y	23	Excel + PowerPoint
Event Research	25	Omnigraffle + PowerPoint
Price Chart	27, 28	Screen Grab from TMX.com

Title	Slide #	Created Using
Annotated Family Tree	30	Open Draw
Annotated Stock Chart	31	Screen Grab + PowerPoint
Map of Faculty Alumni	33	Google Maps
Corporate Relationship Map	34	Visio
Crossover Between Donors	39	Word
Unassigned Faculty Alumni	40	Tableau

Title	Slide #	Created Using
Donor Pipeline Segmenting	41	Omnigraffle
Pipeline Dashboard	42	Tableau
Company Ownership History	57	Open Draw
Family/Business Connections	58	PowerPoint
Annual Revenue by Source	60	PowerPoint
Reporting Structure for Bank	62	Visio

Title	Slide #	Created Using
File Circulation Sheet	63	Visio
Association Network	73, 74	Google Draw

Further Reading

- Cool Infographics Blog
- Cool Infographics, Randy Krum (2013)
- Data Visualization for Dummies, Mico Yuk and Stephanie Diamond (2014)
- Data points: visualization that means something, Nathan Yau (2013)
- Designing Data Visualizations, Noah Ilinsky and Julie Steele (2011)
- Designing Everyday Things, Don Norman (1988)
- The Visual Display of Quantitative Information, Edward Tufte (1983)

Contact Us

Erin Moffatt

Prospect Research Analyst, University of Alberta eemoffat@ualberta.ca

Liz Murray

Manager, Knowledge & Systems, Sunnybrook Foundation Liz.Murray@sunnybrook.ca

Questions?

